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Abstract The very simple algorithms we deal with in this paper 
are but e ~ a m ~ l e s  of how algorithms can and must be ac- - 
counted for in evaluating the overall system dependability. 

at the end of this paper. 

Issues On the Of routing and load balancing A detailed description can be found in the references 
on the stability of a fault-tolerant distributed database sys- 
tem are emmined. Degradation indezes are defined for the 
system dependability and some open question are risen. 

1.1 Preliminary concepts 
1. Introduction 

This paper deals with concepts related to algorithms as an 
important issue in the evaluation of the Dependability of 
Information and Control Systems. Such systems can be 
seen as very complex "machines" whose components belong 
to three different technological species: 

1. hardware; 

2. algorithms; 

3. software (both system and application). 

Mentioning algorithms as components in the evaluation of 
systems dependability, I want to separate algorithms them- 
selves - even if in the broad meaning of problem resolution 
procedures - from their materialization by means of pro- 
grams which can be buggy, in which case they would fall 
into species 3 [SCH 861. 

To be more precise, I mainly refer to control algorithms, 
i.e. to those algorithms which can be found in the heart of 
Operating Systems, Database Management Systems, indus- 
trial process control systems, etc.. These algorithms, even 
if "correct" with respect to functional specifications, can in- 
fluence the availability of the system to the end user "phys- 
iologically" - in the sense that their very function is to deny 
a user the access to a particular resource owing to instanta- 
neous workload conditions (e.g. concurrency control). How- 
ever algorithms can influence the overall system dependabil- 
ity "pathologically" since they can show a faulty behaviour 
under particular dynamic workload conditions and system 
constraints (e.g. load balancing, routing, etc. under tight 
response time constraints). 
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First of all, let us review some concepts which are closely 
related to "good behaved" algorithms: 

Correctness: it is the fundamental property of whatever 
algorithm. An algorithm i s  correct if for whatever legal in- 
put it produces an output in accordance with the functional 
specifications of the problem [BOY 81, GHE 871. 

Efficiency: it is the property which deals with the prac- 
tical implementability and with the overhead the algorithm 
introduce in the system. Generally it is measured in terms of 
number of computation steps (time complexity) or of mem- 
ory occupation (space complexity) as asymptotycal func- 
tions of the dimension of the problem [HAR 871. 

Besides these classical features, two more properties be- 
came of interest in the recent years: 

Robustness: this property deals with the practical op- 
eration of a system. An algorithm is robust if it produces 
correct results or it allows on-the-way adjustments even in 
presence of (small) errors in the inputs or in intermediate 
results. It is very important to avoid back-up/restart oper- 
ations for error conditions which can be easily dealt with, 
and to provide a friendly user interface for possible errors 
made by the human operator. 

Safety: an algorithm is safe if for whatever input it 
will not produce "hazardous" results. This is a very im- 
portant property for algorithms used in industrial process 
control, where wrong actions from the controlling computer 
are directly applied to the physical world, possibly with dis- 
astrous consequences, and cannot be recovered. In Informa- 
tion Systems, Safety takes a slightly different meaning and 
it is generally called Security [LEV 86, COM 841. 
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As to the system the algorithms are part of, two prop- 
erties are of relevance: 

Avsilability: a system is available if it correctly delivers 
its services to the user, whatever happens to its internal 
operation. Availability is measured as the probability that 
within a time interval, called the mission time, the system 
works [BAR 651. 

Reliability: a system is reliable if it does not break at 
all. Reliability is measured as the probability that, at  some 
time t after having been started, the system is still working, 
without any maintenance action being performed [BAR 651. 

Two more properties are derived from the above defi- 
nitions: 

Fault-tolerance and Fail-soft behaviour. The former is 
related to the possibility that the system remains available 
even in the presence of faults; the latter that, in presence 
of faults, the system still partially works, but with reduced 
performance. 

Availability and reliability are generically referred to 
as Dependability. We can observe that, while efficiency is 
related to the physiological behaviour, correctness, robust- 
ness, and safety are all involved with possible faults which 
affect system dependability. 

In evaluating the dependability of a system, dynamical 
aspects (i.e. those features which depend on workload vari- 
ations in time) are of great relevance [MEY 88). In fact, the 
behaviour of many control algorithms is heavily affected by 
the workload feeded to the system, both as to its quantita- 
tive and qualitative features. 

In fact, in a real-time system (e. g. for process con- 
trol or for counter operation), the response time constitutes 
not only a parameter for performance evaluation, but it be- 
coma a fundamental factor for the system reliability since, 
if a threshold T is exceeded, the system must be considered 
faulty (KOP 891. Therefore, the behaviour of the response 
time t, vs. the utilization factor (i. e. the workload) p 
of a computer resource becomes discontinuous, as shown in 
figure 1 [SCH 841. The system therefore shows an unstable 
behaviour, since a small increase in p results in an infinite 
growth in t,. 
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Fig. 1 

In distributed computing systems, resource availabil- 
ity can be enhanced by replicating identical copies of the 
same resource at several nodes and by designing schedul- 
ing algorithms which can allocate requests to any available 
copy [STA 851; this is a feature common to systems with a 
very different technological nature, as shown in (SCH 881. In 
[KIN 891 procedures are described to manage such a routing 
process. 

Usually the allocation is made with the aim of balancing 
the workload among the nodes. In presence of failures of 
any node, the workload is rerouted, if possible, to other 
available copies of the resources which were active on the 
faulty node (this model can be refined to consider failure 
of specific resources on the node instead of the node as a 
whole) [SCH 861. 

While several papers address the issues of defining al- 
gorithms for load sharing with the aim of optimiising the 
system behaviour [ELZ 86, TFG 881, in this paper we intre  
duce a quantitative study of system degradation and of the 
possible arising of instability conditions. 

2. A Model 

Henceforth, we consider a distributed database on a real 
time system. Let us consider the following architectural 
variables: 

N = {n, , . . . , n,} a set of nodes (processors) of a com- 
puter network; 

F = {f,, ..., fm} a set of fifes constituting the dis- 
tributed database; 

f,! the copy of file fi on node k; 
Tk the threshold response time of node k. 

Each node can be in just one of two states: working or 
failed. The state of the system is determined by the set W 
of the working nodes: 

W = {niIni i s  working} 

Si = {nilni E W} 

A system state Si is compatible if Si # {a}, where {a} is 
the empty set (absorbing state). 

A system is fully working if 

i. e. at least a working copy of each file exists. 

A system is partially working if 

3fi : {fi") = 

i. e. some file disappeared. 
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A system is failed if 

i. e. no file of the database survives. 

In the case of a partially working system, we can define 
a number of degradation indexes which measure the amount 
of unavailability of the system. As an example we can define 
the 

Brute Degradation Index = 

i. e. the percentage of the number of working files with 
respect to the total number of files in the database. Another 
index could be the 

Mass Weighted Degradation Index = 

when the larger files are given more importance than 
the smaller ones. Other such indexes can be defined at 
will. In particular, we could define weighted indexes for each 
transaction, where the weight is 1 for the files interested in 
the transaction and 0 for the others; 

Transaction(j) Weighted Degradation Index = 

1, if fi E transaction j ;  
0, otherwise; where pij = 

the choice of such an index allows the evaluation of the avail- 
ability of the system with respect to a specific transaction, 
as shown in [SCH 841. 

More specifically, we can consider a data-compatible 
state as a state in which the system is at least partially 
working, since it is conceivable that the database occupies 
only a subset of the network nodes. A state in which the sys- 
tem is failed can be considered therefore as data-absorbing. 

Let us give the following definitions: 

- the transition Si 4 Sj is stable if Sj is data-compa- 
tible; 

- the transition Si --+ Si is transitively stable if there is 
a sequence of transitions Si --t S, -+ ... + S, and 
Sj is data-compatible; 
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NAIVEASSIGNLOAD (L, W) 
begin 

while L # {a} A W # {a} 
do begin 

assign L = {ll,. . . , lw  } to the available 
physical resources nl , . . . , n, ; 
evaluate pi ,  i = 1 , .  . . , w; 
if 3, 5i - pi 5 0 
then begin 

W = W - n i ;  
NAIV EASSIGNLOA D (L,  W ) ;  
end; 

else ezit; 
8;  
end; 

od; 
end; 

Fig. 2 

- the transition Si -+ Sj is unstable if Sj is data-absor- 
bing. 

'&ansitions between states can be induced by the fail- 
ure or by the timing-out of a node. We suppose that the 
main reason for the timing-out is overloading and that no 
hot recovery/restart procedures exist on the single nodes (no 
special hardware). This means that the time constants of 
the recovery actions lie in the range of some minutes, while 
the time constants of the rerouting actions lie in the range 
of some hundreds of milliseconds; therefore the system, as 
to the effect we want to study, can be considered without 
repair. When there is a transition between two states and 
the workload can be switched to the copies of the files avail- 
able at other nodes of the system, there is an increase of the 
utilization factors pi of the latters, possibly causing some 
T, to be exceeded. In this case another state transition is 
triggered and so on until either the system reaches a stable 
state, possibly a partially working one, or it fails. In the 
latter case we say the system is unstable [SCH 881. 

The repartiton strategy of the workload among the 
equivalent resources can be represented by a Dependence 
Graph DG = {V, A,  L} [SCH 841 where: 

- each vertex V represents a processing node and the files 

- each arc A connects two vertices iff the resources they 

stored on it; 

represent are equivalent; 

which can be transferred between the vertices. 

Figure 2 shows a naive algorithm implementing such a 
load routing policy. Wiser policies make information on the 
loading state of each node available to all the others and 
use this information to do adaptive load assignment [ELZ 
86, LiM 821, as shown in figure 3. Activation conditions for 
both algorithms could be as follows, where XX = {NAIVE, 

- labels L placed on arcs represent the amount of load 



WISE} : 
on new workload 
do L = L + li; X X A S S I G N L O A D  (L,  W ) ;  
on failure o f  a loaded resource 
do W = W - w,; X X A S S I G N L O A D  (L,  W ) ;  

A description in terms of a feedback loop of such a behaviour 
is shown in figure 4. It has been shown in [SCH 881 that 
this model applies to very different engineering systems. 

WISEASSIGNL OAD (L, W )  
begin 

while L #  { @ } A  W # {@} 
do begin 

if 31, I E W A Vi E I * k - pi > 0 
then begin 

try to assign L to nodes in I in such a way as 
nowhere jd i s  exceeded; 
if 3 ,  j.i; - pi I 0 
then leave previous assignment as it is ,  
call for flow control and exit; 
else exit; 
8; 
end; 

else declare system crash and ezit; 
fi; 
end; 

od; 
end; 

Fig. 3 
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3. Some Experimental Results 

An analytic simulation package for systems based on the 
simple M/M/l model treated in [SCH 841 has been built 
and it is described in [2AR 891. Figure 5 is an output exam- 
ple which shows a plot of BDI against the mean utilization 
factor of the nodes in a database of 35 distinct files dis- 
tributed, with replication, on 11 nodes. The rescheduling 
policy in this case simply consists in a uniform distribution 

fattort di Carico I 
~t : T : 1 sec I : T : l , 2 5  sec 

Fig. 5 

among the surviving copies of the workload on the files be- 
longing to a failed node. It can be seen that an increase 
in the timeout value T results in a lower degradation for 
a given workload. In another example, shown in figure 6, 
the higher timeout value allows the system to survive pretty 
well, with a low BDI, while the lower value induces complete 
failure. 

i' I 

Fig. 6 

4. Conclusions and  future work 

It comes, from the previous discussion, that the behaviour 
of the routing algorithm is vital for the dependability of 
the system; the transitions induced by the algorithm should 
be stable or at least transitively stable. We should speak 
in general of the dependability of control algorithms in the 
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same way as of any other hardware or software component 
in the system, being cautious not to confuse it with the 
existence of software bugs. 

The routing algorithms of our examples can be ex- 
pressed both in iterative or recursive form, and we could put 
some upper bound on the number of iterations or of recur- 
sive calls to check for runaway. In particular, even without 
applying formal termination proofs, it is easy to find that, 
for some set of input data, algorithm NAIVEASSIGNLOAD 
eventually terminates with W = { Q } ,  thus showing intrinsic 
instability. 

Moreover, if we release the non repairability constraint 
(i. e. we admit also the case that W = W + ni), an- 
other well known form of dynamic instability of routing 
algorithms arises, since the workload can be continuously 
switched among the nodes without ever being processed. 
Such an “oscillating” behaviour, also known as “processor 
thrashing” [ELZ 861, sends t ,  to infinity anyway. Again, is a 
check on the proper termination of the algorithm a sufficient 
test condition? 

Qualitative features of the workload, such as the read/ 
update ratio, can influence the system dependability as well 
[SCH 861. In fact, resilient updating operations usually re- 
sult in a higher workload than queries, due both to updates 
broadcasts to multiple copies and to the concurrency control 
algorithms of the local DBMSs. 

Far from bringing solutions, this contribution should 
raise a discussion on the role of the algorithmic components 
in evaluating and assuring the dependability of complex 
computer systems. 
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