
Notes On Real-Time Distributed Database
Systems Stability

Fabio A. Schreiber

Dipartimento di Elettronica - Politecnico di Milano - Italy

Abstract The very simple algorithms we deal with in this paper
are but e ~ a m ~ l e s of how algorithms can and must be ac- -
counted for in evaluating the overall system dependability.

at the end of this paper.

Issues On the Of routing and load balancing A detailed description can be found in the references
on the stability of a fault-tolerant distributed database sys-
tem are emmined. Degradation indezes are defined for the
system dependability and some open question are risen.

1.1 Preliminary concepts
1. Introduction

This paper deals with concepts related to algorithms as an
important issue in the evaluation of the Dependability of
Information and Control Systems. Such systems can be
seen as very complex "machines" whose components belong
to three different technological species:

1. hardware;

2. algorithms;

3. software (both system and application).

Mentioning algorithms as components in the evaluation of
systems dependability, I want to separate algorithms them-
selves - even if in the broad meaning of problem resolution
procedures - from their materialization by means of pro-
grams which can be buggy, in which case they would fall
into species 3 [SCH 861.

To be more precise, I mainly refer to control algorithms,
i.e. to those algorithms which can be found in the heart of
Operating Systems, Database Management Systems, indus-
trial process control systems, etc.. These algorithms, even
if "correct" with respect to functional specifications, can in-
fluence the availability of the system to the end user "phys-
iologically" - in the sense that their very function is to deny
a user the access to a particular resource owing to instanta-
neous workload conditions (e.g. concurrency control). How-
ever algorithms can influence the overall system dependabil-
ity "pathologically" since they can show a faulty behaviour
under particular dynamic workload conditions and system
constraints (e.g. load balancing, routing, etc. under tight
response time constraints).

This research is partially supported by M U R S T research funds

TH0326-9/90/0000/0560/$01 .OO 0 1990 IEEE

First of all, let us review some concepts which are closely
related to "good behaved" algorithms:

Correctness: it is the fundamental property of whatever
algorithm. An algorithm i s correct if for whatever legal in-
put it produces an output in accordance with the functional
specifications of the problem [BOY 81, GHE 871.

Efficiency: it is the property which deals with the prac-
tical implementability and with the overhead the algorithm
introduce in the system. Generally it is measured in terms of
number of computation steps (time complexity) or of mem-
ory occupation (space complexity) as asymptotycal func-
tions of the dimension of the problem [HAR 871.

Besides these classical features, two more properties be-
came of interest in the recent years:

Robustness: this property deals with the practical op-
eration of a system. An algorithm is robust if it produces
correct results or it allows on-the-way adjustments even in
presence of (small) errors in the inputs or in intermediate
results. It is very important to avoid back-up/restart oper-
ations for error conditions which can be easily dealt with,
and to provide a friendly user interface for possible errors
made by the human operator.

Safety: an algorithm is safe if for whatever input it
will not produce "hazardous" results. This is a very im-
portant property for algorithms used in industrial process
control, where wrong actions from the controlling computer
are directly applied to the physical world, possibly with dis-
astrous consequences, and cannot be recovered. In Informa-
tion Systems, Safety takes a slightly different meaning and
it is generally called Security [LEV 86, COM 841.

560

As to the system the algorithms are part of, two prop-
erties are of relevance:

Avsilability: a system is available if it correctly delivers
its services to the user, whatever happens to its internal
operation. Availability is measured as the probability that
within a time interval, called the mission time, the system
works [BAR 651.

Reliability: a system is reliable if it does not break at
all. Reliability is measured as the probability that, at some
time t after having been started, the system is still working,
without any maintenance action being performed [BAR 651.

Two more properties are derived from the above defi-
nitions:

Fault-tolerance and Fail-soft behaviour. The former is
related to the possibility that the system remains available
even in the presence of faults; the latter that, in presence
of faults, the system still partially works, but with reduced
performance.

Availability and reliability are generically referred to
as Dependability. We can observe that, while efficiency is
related to the physiological behaviour, correctness, robust-
ness, and safety are all involved with possible faults which
affect system dependability.

In evaluating the dependability of a system, dynamical
aspects (i.e. those features which depend on workload vari-
ations in time) are of great relevance [MEY 88). In fact, the
behaviour of many control algorithms is heavily affected by
the workload feeded to the system, both as to its quantita-
tive and qualitative features.

In fact, in a real-time system (e. g. for process con-
trol or for counter operation), the response time constitutes
not only a parameter for performance evaluation, but it be-
coma a fundamental factor for the system reliability since,
if a threshold T is exceeded, the system must be considered
faulty (KOP 891. Therefore, the behaviour of the response
time t, vs. the utilization factor (i. e. the workload) p
of a computer resource becomes discontinuous, as shown in
figure 1 [SCH 841. The system therefore shows an unstable
behaviour, since a small increase in p results in an infinite
growth in t,.

t ,

T

4

'I
I .

I .

I' 1
I
I

' .

I I 1 & -
P l P

Fig. 1

In distributed computing systems, resource availabil-
ity can be enhanced by replicating identical copies of the
same resource at several nodes and by designing schedul-
ing algorithms which can allocate requests to any available
copy [STA 851; this is a feature common to systems with a
very different technological nature, as shown in (SCH 881. In
[KIN 891 procedures are described to manage such a routing
process.

Usually the allocation is made with the aim of balancing
the workload among the nodes. In presence of failures of
any node, the workload is rerouted, if possible, to other
available copies of the resources which were active on the
faulty node (this model can be refined to consider failure
of specific resources on the node instead of the node as a
whole) [SCH 861.

While several papers address the issues of defining al-
gorithms for load sharing with the aim of optimiising the
system behaviour [ELZ 86, TFG 881, in this paper we intre
duce a quantitative study of system degradation and of the
possible arising of instability conditions.

2. A Model

Henceforth, we consider a distributed database on a real
time system. Let us consider the following architectural
variables:

N = {n, , . . . , n,} a set of nodes (processors) of a com-
puter network;

F = {f,, ..., fm} a set of fifes constituting the dis-
tributed database;

f,! the copy of file fi on node k;
Tk the threshold response time of node k.

Each node can be in just one of two states: working or
failed. The state of the system is determined by the set W
of the working nodes:

W = {niIni i s working}

Si = {nilni E W}

A system state Si is compatible if Si # {a}, where {a} is
the empty set (absorbing state).

A system is fully working if

i. e. at least a working copy of each file exists.

A system is partially working if

3fi : {fi") =

i. e. some file disappeared.

561

A system is failed if

i. e. no file of the database survives.

In the case of a partially working system, we can define
a number of degradation indexes which measure the amount
of unavailability of the system. As an example we can define
the

Brute Degradation Index =

i. e. the percentage of the number of working files with
respect to the total number of files in the database. Another
index could be the

Mass Weighted Degradation Index =

when the larger files are given more importance than
the smaller ones. Other such indexes can be defined at
will. In particular, we could define weighted indexes for each
transaction, where the weight is 1 for the files interested in
the transaction and 0 for the others;

Transaction(j) Weighted Degradation Index =

1, if fi E transaction j ;
0, otherwise; where pij =

the choice of such an index allows the evaluation of the avail-
ability of the system with respect to a specific transaction,
as shown in [SCH 841.

More specifically, we can consider a data-compatible
state as a state in which the system is at least partially
working, since it is conceivable that the database occupies
only a subset of the network nodes. A state in which the sys-
tem is failed can be considered therefore as data-absorbing.

Let us give the following definitions:

- the transition Si 4 Sj is stable if Sj is data-compa-
tible;

- the transition Si --+ Si is transitively stable if there is
a sequence of transitions Si --t S, -+ ... + S, and
Sj is data-compatible;

562

NAIVEASSIGNLOAD (L, W)
begin

while L # {a} A W # {a}
do begin

assign L = {ll,. . . , lw } to the available
physical resources nl , . . . , n, ;
evaluate pi , i = 1 , . . . , w;
if 3, 5i - pi 5 0
then begin

W = W - n i ;
NAIV EASSIGNLOA D (L, W) ;
end;

else ezit;
8;
end;

od;
end;

Fig. 2

- the transition Si -+ Sj is unstable if Sj is data-absor-
bing.

'&ansitions between states can be induced by the fail-
ure or by the timing-out of a node. We suppose that the
main reason for the timing-out is overloading and that no
hot recovery/restart procedures exist on the single nodes (no
special hardware). This means that the time constants of
the recovery actions lie in the range of some minutes, while
the time constants of the rerouting actions lie in the range
of some hundreds of milliseconds; therefore the system, as
to the effect we want to study, can be considered without
repair. When there is a transition between two states and
the workload can be switched to the copies of the files avail-
able at other nodes of the system, there is an increase of the
utilization factors pi of the latters, possibly causing some
T, to be exceeded. In this case another state transition is
triggered and so on until either the system reaches a stable
state, possibly a partially working one, or it fails. In the
latter case we say the system is unstable [SCH 881.

The repartiton strategy of the workload among the
equivalent resources can be represented by a Dependence
Graph DG = {V, A, L} [SCH 841 where:

- each vertex V represents a processing node and the files

- each arc A connects two vertices iff the resources they

stored on it;

represent are equivalent;

which can be transferred between the vertices.

Figure 2 shows a naive algorithm implementing such a
load routing policy. Wiser policies make information on the
loading state of each node available to all the others and
use this information to do adaptive load assignment [ELZ
86, LiM 821, as shown in figure 3. Activation conditions for
both algorithms could be as follows, where XX = {NAIVE,

- labels L placed on arcs represent the amount of load

WISE} :
on new workload
do L = L + li; X X A S S I G N L O A D (L, W) ;
on failure o f a loaded resource
do W = W - w,; X X A S S I G N L O A D (L, W) ;

A description in terms of a feedback loop of such a behaviour
is shown in figure 4. It has been shown in [SCH 881 that
this model applies to very different engineering systems.

WISEASSIGNL OAD (L, W)
begin

while L # { @ } A W # {@}
do begin

if 31, I E W A Vi E I * k - pi > 0
then begin

try to assign L to nodes in I in such a way as
nowhere jd i s exceeded;
if 3 , j.i; - pi I 0
then leave previous assignment as it is ,
call for flow control and exit;
else exit;
8;
end;

else declare system crash and ezit;
fi;
end;

od;
end;

Fig. 3

state of
physical
resources

EXTERNAL
FAILURES

Fig. 4

3. Some Experimental Results

An analytic simulation package for systems based on the
simple M/M/l model treated in [SCH 841 has been built
and it is described in [2AR 891. Figure 5 is an output exam-
ple which shows a plot of BDI against the mean utilization
factor of the nodes in a database of 35 distinct files dis-
tributed, with replication, on 11 nodes. The rescheduling
policy in this case simply consists in a uniform distribution

fattort di Carico I
~t : T : 1 sec I : T : l , 2 5 sec

Fig. 5

among the surviving copies of the workload on the files be-
longing to a failed node. It can be seen that an increase
in the timeout value T results in a lower degradation for
a given workload. In another example, shown in figure 6,
the higher timeout value allows the system to survive pretty
well, with a low BDI, while the lower value induces complete
failure.

i' I

Fig. 6

4. Conclusions and future work

It comes, from the previous discussion, that the behaviour
of the routing algorithm is vital for the dependability of
the system; the transitions induced by the algorithm should
be stable or at least transitively stable. We should speak
in general of the dependability of control algorithms in the

563

same way as of any other hardware or software component
in the system, being cautious not to confuse it with the
existence of software bugs.

The routing algorithms of our examples can be ex-
pressed both in iterative or recursive form, and we could put
some upper bound on the number of iterations or of recur-
sive calls to check for runaway. In particular, even without
applying formal termination proofs, it is easy to find that,
for some set of input data, algorithm NAIVEASSIGNLOAD
eventually terminates with W = { Q } , thus showing intrinsic
instability.

Moreover, if we release the non repairability constraint
(i. e. we admit also the case that W = W + ni), an-
other well known form of dynamic instability of routing
algorithms arises, since the workload can be continuously
switched among the nodes without ever being processed.
Such an “oscillating” behaviour, also known as “processor
thrashing” [ELZ 861, sends t , to infinity anyway. Again, is a
check on the proper termination of the algorithm a sufficient
test condition?

Qualitative features of the workload, such as the read/
update ratio, can influence the system dependability as well
[SCH 861. In fact, resilient updating operations usually re-
sult in a higher workload than queries, due both to updates
broadcasts to multiple copies and to the concurrency control
algorithms of the local DBMSs.

Far from bringing solutions, this contribution should
raise a discussion on the role of the algorithmic components
in evaluating and assuring the dependability of complex
computer systems.

5. References

BAR 65

BOY 81

COM 84

ELZ 86

GHE 87

R. E. Barlow, F. Proshan - Mathematical Theory of
Reliability - Wiley (1965)

R.S. Boyer, J. Strother Moore (Eds.) -The Correctness
Problem in Computer Science - Academic Press (1981)

Special issue on Software for Industrial Process Control
- IEEE Computer, Vol. 17, n. 2 (1984)

D. L. Eager et Al. - Adaptive Load Sharing in Homo-
geneous Distributed Systems - IEEE IYansactions on
Software Engineering, Vol. SE-12, n. 5, pp. 662-675
(1986)

C. Ghezzi, D. Mandrioli - Theoretical Foundations of
Computer Science - Wiley (1987)

HAR 87 D. Hare1 - Algorithmics: the Spirit of Computing -
Addison-Wesley (1987)

KIN 89 R. P. King et Al. - Management of a Remote Backup
Copy for Disaster Recovery - Princeton University CS-
TR-IW88, pp.28 (1989)

KOP 89 H. Kopetz et Al. - Distributed Fault-Tolerant Real-
Time Systems: the MARS Approach - IEEE Micro,
Vol. 9, n. 1, pp. 25-40 (1989)

LEV 86 N. Leveson - Software Safety: What, Why, and How -
ACM Computing Surveys, Vol. 18, n. 2 (1986)

LiM 82 M. Livni, M. Melman - Load Balancing in Homoge-
neous Broadcast Distributed Systems - Proc. ACM
Comp. Network Performance Symp., College Park, pp.
47-55 (1982)

MEY 88 J.F. Meyer, L. Wei - Analysis of Workload Influence on
Dependability - Proceedings of FTCS-18, Tokio, pp.
84-89, (1988)

SCH 84 F. A. Schreiber - State Dependency Issues in Evaluat-
ing Distributed Database Availability - Computer Net-
works, Vol. 8, n.3, pp. 187-198 (1984)

SCH 86 F. A. Schreiber - Information Systems: a Challenge
for Computers and Communications Reliability - IEEE
Journal on Selected Areas in Communications, Vol.
SAC-4, n. 6, pp.1077-1083 (1986)

SCH 88 F. A. Schreiber, G. Rosolini - An Algebraic Description
of Some State-Dependent Failure Mechanisms - Infor-
mation Processing Letters, Vol. 29, n. 4, pp. 207-211

STA 85 J. A. Stankovic - Stability and Distributed Scheduling
Algorithms - IEEE Transactions on Software Engineer-
ing, Vol. SE-11, n. 10, pp. 1141-1152 (1985)

TFG 88 S. K. Tripathi et Al. - Load Sharing in Distributed
Systems with Failures - Acta Informatica, Vol. 25, pp.

2AR 89 A. Rocchetti, A. Rusconi - Affidabilita dei Sistemi Di-
stribuiti - Progetto di laurea, Politecnico di Milano

(1988)

677-689 (1988)

(1989)

564

-1

